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ABSTRACT

The huge amount of data generated by devic-
es, vehicles, buildings, the power grid, and many 
other connected things, coupled with increased 
rates of data transmission, constitute the big data 
challenge. Among many areas associated with the 
Internet of Things, smart grid and electric vehilces 
have their share of this challenge by being both 
producers and consumers (ie., prosumers) of big 
data. Electric vehicls can significantly help smart 
cities to become greener by reducing emissions 
of the transportation sector and play an import-
ant role in green smart cities. In this article, we 
first survey the data analytics techniques used for 
handling the big data of smart grid and electric 
vehicles. The data generated by electric vehicles 
come from sources that vary from sensors to trip 
logs. Once this vast amount of data are analyzed 
using big data techniques, they can be used to 
develop policies for siting charging stations, devel-
oping smart charging algorithms, solving energy 
efficiency issues, evaluating the capacity of power 
distribution systems to handle extra charging 
loads, and finally, determining the market value 
for the services provided by electric vehicles (i.e., 
vehicle-to-grid opportunities). This article provides 
a comprehensive overview of the data analytics 
landscape on the electric vehicle integration to 
green smart cities. It serves as a roadmap to the 
future data analytics needs and solutions for elec-
tric vehicle integration to smart cities.

INTRODUCTION
According to International Data Corporation’s 
(IDC’s) visionary presentation on “The Digital Uni-
verse of Opportunities,” the overall created and 
copied data volume worldwide was 4.4 zettabytes 
(ZB) in 2013. The volume of data is doubling 
every two years, and by 2020 the total volume 
will exceed 44 ZB (44 trillion GB). Besides the vol-
ume, the velocity of the data is growing as a result 
of the advances in communication technologies 
and the Internet of Things (IoT). Such enormous 
datasets with high velocity, veracity, and variety 
are expressed as the big data phenomenon.

Smart grid and electric vehicles (EVs) are 
among the main drivers of IoT, as they form a 
large connected network of things, such as vehi-
cles, charging stations, smart meters, intelligent 
electronic devices (IEDs), and phasor measure-

ment units (PMUs). They are also anticipated to 
be the drivers of green smart cities by enabling 
efficient integration of renewable energy and 
lower emissions. The green smart city vision antic-
ipates almost all flat surfaces, including roads, cov-
ered by solar panels to maximize the utilization 
of solar energy [1]. EVs carry dozens of sensors 
that provide data including user driving behav-
iors, battery security via a battery management 
system (BMS), and grid charge management via 
charging stations. Drivers, as well, carry smart 
devices and wearables that contribute to the data 
generated on roads. With smart, autonomous, 
self-driving cars, those data will be continuous-
ly moving from cars to servers and cars to cars. 
In the case of EV grid integration (EVGI), their 
charging and discharging pattern is tightly cou-
pled with the operation, security, and efficiency of 
the smart grid. In that sense, data analytics play a 
critical role in EVGI, green smart cities, and other 
green infrastructure as presented in [2]. In partic-
ular, charging planning and harmonization of EVs 
for selling power back to the grid (i.e., vehicle to 
grid, V2G) require fast and reliable data analytics 
techniques.

In this article, we provide a comprehensive sur-
vey of existing techniques, and provide a road-
map for future technologies in data analytics for 
EVGI applications in green smart cities. We start 
with a brief overview of smart grid and EVs to 
present the applications and potential challenges. 
We discuss the sources of big data generation in 
detail. Then we continue with a survey on data 
analytics tools that are used in this domain. The 
article aims to introduce the existing data analyt-
ics studies on EVs and smart grid. Hadoop-based 
cloud platforms, prediction methods, and decision 
support tools are among the surveyed data ana-
lytics studies. The article provides a requirement 
analysis for future data analytics tools and aims to 
serve as a roadmap for researchers in this area.

Figure 1 provides an overview of EV inte-
gration with V2G, G2V, power and information 
exchange, heterogeneous communication tech-
nologies, data flow, cloud integration, applica-
tions, and big data analytics tools. As shown in the 
figure, EV-EVSE-grid communication can be imple-
mented by power line communications (PLC) 
and wireless networks. Note that EVSE is the EV 
supply equipment and is used interchangeably 
throughout this article. EVs can be charged and 

Big Data Analytics for Electric Vehicle 
Integration in Green Smart Cities

Boyang Li, Mithat C. Kisacikoglu, Chen Liu, Navjot Singh, and Melike Erol-Kantarci

GREEN COMMUNICATIONS AND COMPUTING NETWORKS

The authors provide a 
comprehensive overview 
of the data analytics land-
scape on the EV integra-

tion to green smart cities. 
It serves as a roadmap to 
the future data analytics 
needs and solutions for 
EV integration to smart 

cities.

Boyang Li  is with Illinois Instititue of Technology; Mithat C. Kisacikoglu is with the University of Alabama; Chen Liu is with Clarkson University; 
Navjot Singh and Melike Erol-Kantarci are with the University of Ottawa.

Digital Object Identifier:
10.1109/MCOM.2017.1700133



IEEE Communications Magazine • November 201720

discharged in a coordinated fashion. The big data 
from EVs and all other entities are stored and pro-
cessed over the cloud for various application pur-
poses including optimized charging. Some widely 
used big data tools are also plotted in the figure.

The rest of the article is organized as follows. 
The following section provides an overview of 
the integration of EVs to the smart grid. Then 
we describe the sources of big data in EVs and 
G2V/V2G applications. Following that, we pro-
vide a detailed survey on the available big data 
approaches and platforms for processing EV data. 
We then discuss the open issues, requirements 
for data analytics tools tailored for EVs, and some 
future concepts that require more research. In the 
final section, we conclude the article.

AN OVERVIEW OF SMART GRID AND 
ELECTRIC VEHICLE INTEGRATION

Smart grid is the modernized electrical grid that 
integrates advanced sensing, communication, and 
control functionality for the purpose of enhanced 
efficiency, reliability, and security in the operation 
of the utility grid. EVs are either completely or par-
tially powered by their onboard batteries, which 
are charged by the power grid. Plug-in EVs use less 
fossil fuels and emit much less CO2 compared to 
conventional vehicles and therefore are incentiv-
ized by many governments to improve air quality 
and reduce greenhouse gas emissions. Despite the 
advantages, there are still challenges for the wide-
spread adoption of EVs. Limited driving range and 
associated driver range anxiety, long duration for 
charging, and non-ubiquity of charging stations are 
the critical barriers to the penetration of EVs. In 
addition, with a growing EV market, the impact 
of EVs on the power grid is a matter of concern, 
especially at the distribution level. This may result 
in adverse effects such as peak loading, increased 
losses, voltage unbalance/deviations, and need 
for additional network reinforcements. Data man-

agement in EVGI plays a vital role for healthy inte-
gration of these new technology vehicles into the 
future green smart cities.

EV batteries are charged using onboard char-
gers and EVSE, also known as charging stations. 
EVSEs can be located at residential premises, park-
ing lots of commercial buildings, and any roadside 
charging facility. The EV integration framework 
enables EVs to be controlled by the smart grid or 
aggregators via the communication between vehi-
cles and the grid. Communication between EVs 
and the smart grid can be a mix of wireless and 
wired technologies including PLC, Zigbee, WiFi, 
LTE, and fifth generation (5G) wireless networks. 
A hardware description of EV grid interaction and 
the EVGI system with bidirectional power and 
communication architecture are shown in Fig. 2. 
The communication between an EV and the smart 
grid includes two concepts: basic signaling and 
high-level communication. Basic signaling refers 
to EV charging control methods utilizing the con-
trol pilot signal of the charging plug for basic G2V 
charging control, as shown in Fig. 2. This control 
is realized by modifying the duty cycle ratio of the 
control pilot signal, which is already available in all 
of the plug-in EVs in the market. Communication 
functions via the current control pilot pin have a 
fairly simple structure and cannot provide the bidi-
rectional information required between EV and 
grid. On the other hand, V2G control is achieved 
via high-level communication that uses PLC super-
imposed on the control pilot signal. In the case of 
PLC, V2G communications is overseen by the EV 
communication controllers (EVCCs) and supply 
equipment communication controllers (SECCs). 
While the EVCC and SECC are primary actors, 
grid operators, charging aggregators, and elec-
tricity providers are the secondary actors of the 
charging communication system. EVs and EVSEs 
can also communicate through wireless networks 
for sharing data that is useful for trip planning, 
real-time pricing, and so on.

Despite the advantages, 
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Figure 1. Implementation diagram of EVGI.
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In G2V charging, the challenges mostly arise 
from the increased stress on distribution systems 
of the smart grid. Due to increased power con-
sumption on the network during peak hours, 
off-peak hours are preferable for EV charging. In 
addition, if the night valley in the 24-hour elec-
tricity demand profile is filled with EV loads, the 
ramping up/down costs that occur in the morn-
ing/evening can be avoided. Meanwhile, charging 
during daytime, especially during peak hours of 
electricity demand, requires extra planning. More-
over, the distribution system suffers from over-
loading if several EV batteries are fed from the 
same transformer.

The charging management mainly relies 
on certain information being available to local 
(distributed) or global (centralized) controllers. 
Information exchanged between vehicle and 
controllers include user departure time, state of 
charge (SOC) of the battery, charging active/
reactive power reference, and user-specific 
information such as charging preference, vehi-
cle vendor, onboard charger power, and battery 
capacity. Compared to distributed control, cen-
tralized control achieves better utilization of EVs 
for grid support due to having more information 
and achieving optimum results. Therefore, central 
power optimization is one of the most explored 
analysis methods in EV charging networks to solve 
congestion related problems. On the other hand, 
the distributed strategy allows each EV to deter-
mine its own charging profile, which may not 
always result in an optimal aggregated charging 
regime. However, the distributed approach has 
gained more attraction in the literature because 
of its higher flexibility for the EV user, higher reli-
ability, and easier field implementation [3]. In this 
case, data communication is much lower, and 
private information is mostly kept in vehicle.

Despite the large number of studies on EV 
charging, less has been explored on how this data 
will be attained, how it will be processed for larg-
er penetration of EVs, and how data from other 
sources could be coupled with data from EVs to 
predict the behavior of a driver for charging or 
discharging the battery. In particular, data that are 
potentially available while the EV is on the move 
have been underutilized. Obviously, more data 
give more chance to derive useful insights, but 
decision making from big data of EVs requires 
finding the right information in near real time. 
In this context, data analytics techniques can 
increase the efficiency of EV data.

During V2G, when EVs act as distributed gen-
erators, data analytics become more of a concern 
and are more needed. When an EV is allowed to 
sell electricity, information on where the vehicle 
will be in the next time frame, how much energy 
will be left in the battery when it is reconnected, 
how much of this energy will be reserved for trad-
ing, load on the utility when the EV is plugged in, 
and similar information need to be available. Part 
of this data could be voluntarily made available by 
the driver, some could be predicted, and the rest 
could be collected from sensors. In any case, the 
amount and speed of data flow are quite big, and 
robust data analytics tools are needed to make 
effective and timely decisions.

In the following section, before we survey the 
data analytics tools, we analyze the potential data 

sources related to EVs. The data from EVs can be 
vehicle, driver, charging station, or even smart 
city related such as traffic condition on roads. The 
vehicle data can come from various sources such 
as batteries, onboard chargers, and trip logs. In 
addition, wearables on drivers contribute to the 
big data of cars. The utility grid power consump-
tion data stream is also important to determine 
which charging/discharging scenario should be 
employed for the specific geographical location.

BIG DATA OF ELECTRIC VEHICLES
New generation autonomous self-driving cars, 
whether electric or not, are equipped with hun-
dreds of sensors and surrounded by smart tech-
nologies. Furthermore, road infrastructure is also 
underway with large deployment of connected 
technologies (i.e., traffic lights, signs, and road 
cameras). The advances in wireless and vehicu-
lar communications enable these smart cars to 
be able to communicate with the infrastructure 
and other smart cars. Autonomous connected 
vehicles and their interaction with smart cities will 
increase the amount of data that is generated and 
shared. In addition, drivers carry a number of sen-
sors on their smartphones and wearable devices. 
In general, IoT, and in particular the Internet of 
Vehicles (IoV) and Internet of Energy (also known 
as Energy Internet), benefit from cloud services 
[4]. Onboard and on-body devices have limited 
storage and processing capabilities. Meanwhile, 
their communication capability opens the door to 
accessing powerful cloud servers. The data from 
EVs, drivers, charging stations, and infrastructure 
constitute the big data of EVs, which requires data 
analytics tools running on the cloud.

Many automobile manufactures allow drivers 
to check the status of their EVs and remotely con-
trol their charging through mobile apps. These 
applications collect vehicle and trip data. EV data 
mostly come from onboard electronic control unit 
(ECUs) and battery management systems (BMSs). 
SOC of EV batteries is a key parameter for most 
charging and discharging decisions. BMS logs 
show SOC information and how an EV battery 
is performing. Malfunctioning battery cells, and 
heating and cooling details can be observed by 
these logs. Based on BMS logs, state of health 

Figure 2. Overview of EV integration with V2G, G2V, heterogeneous commu-
nication technologies, data flow, cloud integration, applications, and big 
data analytics tools.
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(SOH) information can be obtained, and the 
impact of V2G services on battery life can be 
accurately observed.

In addition to the data directly collected from 
EVs, drivers can voluntarily share information 
about their driving patterns and charging habits. 
Trip information including start and end times of 
journeys, connect and disconnect times of char-
gers, and the battery SOC can easily be collected. 
Advanced systems can record details like how 
much air conditioning is used, or how a driver 
accelerates or breaks. All these various kinds of 
data can be used for decision making through 
data analytics tools.

An important parameter for EV performance 
is the driving range. For a long time, market 
acceptance of EVs was low due to range anxi-
ety, which is the worry that the EV battery will run 
out of power before the destination or a suitable 
charging point is reached. Big data is frequently 
used to estimate the driving range, which is an 
efficient way to diminish the range anxiety. In 
[5], the authors proposed a classification meth-
od related to driving range estimation. The data 
are classified as standard, historical, and real-time 
data. Those are defined as follows.

Standard Data: This includes the data obtained 
from official sources such as scheduled tours and 
activities from websites, the usual driving time to 
the destination according to Google Maps, or cli-
matic conditions such as hurricane season or dry 
season.

Historical Data: It refers to the indirect data 
resulting from the feedback of other drivers’ 
experience. For example, recent miles per gal-
lon equivalent (MPGe) of a car can be used to 
predict the refueling stops on the road. Websites 
such as tripadvisor provide reviews from previous 
travelers who share similar trips. Yelp provides 
information on accommodation and food stops. 
These are examples of historical data.

Real-Time Data: This kind of data is close-

ly related to emergency issues. Real-time traffic 
conditions are monitored by the GARMIN app, 
including examples of sudden rain or snow and 
unplanned road closures [5].

In [6], the authors proposed a framework 
to explore drivers’ behavioral patterns and esti-
mate the driving range. They have collected data 
from an EV in Taiwan over one year. They used 
the Growing Hierarchical Self-Organizing Maps 
(GHSOM) algorithm to categorize the driving pat-
tern.

Besides range estimation, big data from EVs can 
be used by municipalities to make decisions on 
siting public charging stations. In this respect, the 
key factor is the evaluation of charging demand. 
Various kinds of data have been employed such 
as road traffic density, distribution of gas stations, 
and vehicle ownership. There are also several 
studies that use travel patterns of taxi fleets in 
order to derive optimal charging station siting. 
In [7], the authors proposed a way to site pub-
lic EV charging stations using big-data-informed 
travel patterns of a taxi fleet. Using Beijing as a 
case study, they examined a large-scale data set 
containing 11,880 taxis for a month. Meanwhile, 
in [8] information from over 30,000 personal trip 
records in Seattle, Washington, gathered from the 
Puget Sound Regional Council’s 2006 household 
travel survey, were used to determine public EV 
parking locations and durations. Regression meth-
ods have been used to predict parking demand 
variables, including total vehicle hours per zone, 
neighborhood and parked time per vehicle trip, 
and so on, as a function of site accessibility, local 
jobs, population densities, and trip attributes. As 
cities become smarter, such data will have vast 
volume, and mining them along with EV data will 
provide more opportunities for planning. A sum-
mary of the data related to EVGI explained in this 
section is presented in Fig 3. In the next section, 
we survey the data analytics tools that make use 
of the data described above.

BIG DATA ANALYTICS PLATFORMS AND 
EV INTEGRATION

The data collected from EVs are various, and the 
volume is huge; therefore, traditional statistical ways 
to build a model may not work very well. Big data 
analytics have been useful for EV integration in a 
variety of ways such as optimized charging, battery 
management, and EV status tracking. In this section, 
we group the existing studies based on the platform 
used. The first subsection focuses on Hadoop-based 
techniques that allow parallel processing of EV big 
data. The second subsection presents a study that 
uses the Weka data mining tool.

HADOOP-BASED APPROACHES

Optimized Charging: In [9], Wei et al. developed 
an optimized charging model, the multi-level feed-
back queue. Their model uses grid demand data, 
charging station data, EV battery data, user data, 
and data from a local distribution system. In order 
to handle the large amount of data from multiple 
sources, they proposed processing data in par-
allel using MapReduce over the Hadoop frame-
work. The authors store their data using HBase, 
which is a NoSQL-based database used for big 
data storage on the cloud computing platform. 

Figure 3. Summary of EV related data sources.
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The presented approach is promising; however, 
its performance has not been evaluated with real 
data. Further studies are needed to show how 
charging can be optimized using Hadoop and big 
data from EVs.

Battery Consumption Prediction: In [10], the 
authors proposed spatio-temporal analysis of EV 
data using Hadoop and the R statistical package. 
The data were collected through a battery mon-
itoring device that accumulated SOC records of 
EVs along major roads in Jeju Island, Korea. The 
authors used Pig scripts, which are high-level pro-
gramming scripts designed for Hadoop, to filter 
the necessary fields from the raw data heap. Then 
they used the R package to conduct time series 
analysis and provided prediction of EVs’ battery 
consumption.

Charging Meter Management: In [11], the 
authors used a similar framework to [10] to 
implement meter management over streaming 
EV data. They implemented a data analysis frame-
work, which, after retrieving the temporal stream 
records from the Master Data Management Soft-
ware (MDMS), used Hadoop Pig scripts to filter 
the raw data. Then the Hadoop Pig script results 
were converted to SQL commands to insert data 
to MySQL. At the final step, a neural network 
library was used to forecast future EV connec-
tions. Similar to [10], the authors used data col-
lected from EVs in Jeju Island. The island aims for 
all its vehicles to be electric by 2030 as part of its 
becoming a carbon-fee city (http://spectrum.ieee.
org/energywise/transportation/ efficiency/kore-
an-island-plans-for-all-electric-vehicles-by-2030). 
The research in [10, 11] represent those efforts 
toward green cities and demonstrate how EV data 
analytics techniques can be used for this purpose.

EV Status Tracking: In [12], the authors 
addressed the unstructured nature of big EV data. 
They also used Hadoop and MapReduce. The 
authors first employed a preprocessing stage to 
remove inconsistencies and duplicates in the data 
to ensure optimum storage. Then the data was 
imported to HBase. In this study, raw EV data was 
extracted and transformed into classified buckets. 
The data were collected through the Think City 
project in Indianapolis. As a result, the authors 
observed more than 10 features for over 200 EVs. 
They tracked analytics on SOC, maximum vehicle 
speed, location, temperature, maximum voltage, 
and current of charging.

WEKA-BASED APPROACH

Decision Support Tool: In [13], Ranganathan et 
al. proposed using decision tree algorithms pro-
vided in the Weka data mining platform to ana-
lyze smart grid and EV data, and form a decision 
support tool for grid operators. The authors used 
NY Independent System Operators (NYISO) 
demand data that is publicly available. The pro-
posed decision support system has two phases: 
data preprocessing and data classification. The 
data preprocessing stage removes irrelevant data 
and noise, while classification is used to reach 
a decision and is based on a decision tree with 
predefined rules. For classification, the authors 
use the J48 ad M5 algorithms, which are readi-
ly available in the Weka platform. Although the 
authors worked on large datasets from the power 
grid, these data sets are offline and their size is still 
manageable compared to the big data that will be 
flowing from millions of EVs. The proposed Weka-
based decision support scheme needs to be fur-
ther evaluated over streaming data from EVs.

A comparison of the surveyed big data analyt-
ics approaches is given in Table 1. The first three 
studies of this section [9–11] focus on big EV 
data in order to provide input for EV applications. 
The research in [12] studies EV data processing 
only and aims to structure the data for general 
EV applications. The final surveyed scheme, [13], 
is a decision support tool for power system oper-
ators. It is suitable for large datasets; however, 
when streaming big data from EVs are analyzed, 
Weka-Hadoop-based platforms may be consid-
ered. In addition, surveyed studies have focused 
on HBase, while there are other NoSQL databas-
es such as Cassandra and MongoDB.

REQUIREMENT ANALYSIS AND 
FUTURE RESEARCH DIRECTIONS

OVERVIEW OF THE LANDSCAPE

The existing literature on applying big data tools 
on EV and smart grid data is limited. One of the 
major challenges is lack of publicly available 
real-world data. Several of the surveyed studies 
have worked on data collected in related proj-
ects; however, these are still not large-scale when 
compared to the anticipated higher penetration 
of EVs and increased data flow. The research in 
[14] generates synthesized EV data where EV 
characteristics have been superimposed on real 

Table 1. Comparison of big data analytics tools used for EVs.

Scheme Data source Purpose Platforms and tools

Optimized charging  [9]
Demand information, charging station parameters, 
car battery data and user data

Optimizing the charging via job scheduling Hadoop and HBase

Battery consumption 
prediction [10]

EVs data collected from Jeju Island testbed
Improving the accuracy of battery consumption 
model

Hadoop and R statistical package 

Charging meter data 
management  [11]

EVSE data collected from Jeju Island testbed
Improving the interoperability of heterogeneous 
chargers

Hadoop, Pig script, MySQL

EV status tracking  [12] Sensor data collected from EVs in Indianapolis
Extracting raw data and transforming into classified 
buckets

Hadoop and HBase

Weka-based decision 
support scheme  [13]

New York City (NYC) demand data
Building decision support engine for power system 
operators

J48 and M5 algorithms from 
Weka platform
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traces of taxis in the San Francisco, California, 
area. This study provides a useful public dataset 
for EV integration; however, it is not suitable to 
evaluate big data methods as the size of data 
is still manageable with traditional data analytic 
techniques. In addition, in the real world, hetero-
geneous, unstructured EV data will be streaming 
from EVs in real time, and it is hard to mimic the 
challenges and evaluate the true performance 
of big data approaches with such static data-
sets. Electric vehicles and the new generation 
of autonomous vehicles can generate data on the 
order of several hundreds of gigabytes to thousands 
of gigabytes during mobility where the amount of 
the data depends on the variety of sensors used 
for autonomy (http://www.networkworld.com/
article/3147892/internet/one-autonomous-car-will-
use-4000-gb-of-dataday.html). During V2G/G2V 
operation of electric vehicles, the data generation 
rate and speed are expected to be lower compared 
to mobility, but the varied sensors collecting data 
from power grid, vehicle, charging station, and driv-
er will need solutions from the big data domain.

Our article categorizes the surveyed approach-
es based on their platform selection. Most of the 
studies work on distributed Hadoop clusters and 
benefit from parallelization with MapReduce. 
They either use the data for a specific EV applica-
tion such as charging, battery, or charger manage-
ment, or store data in HBase to provide for future 
applications. There is also work on utilizing Weka, 
which is a well-known data mining platform.

The research on big data analytics for EVs is in 
its infancy. The performance of NoSQL databases 
such as Cassandra and MongoDB is unexplored. 
Furthermore, the analyzed data has not been 
transformed into decision making in many of the 
studies. The value of big data analytic tools would 
be better evaluated as they transition into deci-
sions for system operators. Nevertheless, there 
are many future opportunities to explore in this 
area. In the following subsection, we focus on var-
ious applications in the EV and smart grid domain 
that can benefit from big data analytics.

REQUIREMENT ANALYSIS AND APPLICATIONS FOR EVS

Analysis of grid integration of EVs includes dif-
ferent subsystems that operate in various time 
domains from microseconds to hours. These 
subsystems include transportation mobility and 
grid service requirements, EVSE and user behav-
ior models, and onboard power electronics and 
battery system modeling for charging operation. 
In order for the utility to be spared the impact of 
the large number of EV connections and to utilize 
already available mass energy storage capacity in 
EVs, communication design of the EVGI frame-
work and decision making through big data ana-
lytics play important roles.

Mobility needs of drivers can usually be cap-
tured with data tracking devices, which in turn 
helps to understand energy consumption profiles 
of drivers. Along with modeling the battery-to-
wheel energy efficiency of different EV vendors, 
it may be possible to generate custom charging 
requirements for EVs. Data analytics is also import-
ant on the utility side requirements when con-
trolling charging. The utility will eventually decide 
which services are needed by the EVs via analyz-
ing its daily demand data stream. Data analytics is 

expected to become more important when EVs 
and intermittent renewable energy generators are 
integrated with daily demands of utility customers.

In addition to planning on the utility side, 
decision making tools need to account for user 
convenience such as each EV having satisfac-
tory SOC at morning departure, as well as the 
emergency driving range that would be offered 
anytime. Besides the charging aspect, EVs can 
provide power to the grid through V2G applica-
tions. They can support ancillary services such as 
voltage support, reactive power compensation, 
active harmonic filtering, and power factor reg-
ulation, as well as load balancing, peak shaving, 
and renewable energy tracking. Additionally, in 
the case of a power outage, an EV can be used 
as an emergency backup source for the home, 
which is often called vehicle-to-home (V2H). An 
advanced charger can also provide vehicle-to-ve-
hicle (V2V) charging to increase the charging 
availability of the EV, even when the EV is out of 
charge without a nearby charging station. This 
can be accomplished via wireless charging and by 
utilizing Uber-like social networking applications. 
All of these future applications of EVs will call for 
strong data analytics tools that fully integrate EV 
and smart grid data. As a result, data analytics 
techniques will need to work on more heteroge-
nous and unstructured data from multiple sources 
flowing at higher speeds, while the decision mak-
ing timeframe will need to be relatively smaller 
than for today’s applications.

FUTURE DIRECTIONS

As mentioned above, the decision making time-
frame will need to be reduced from minutes to 
seconds for integration with most smart grid 
applications. All of the surveyed approaches in 
this article consider Hadoop clusters in the cloud. 
However, the delay for accessing the cloud is a 
major concern for real-time applications. In this 
case, mobile edge computing using Hadoop-like 
parallelization can reduce the response time of 
decision making. This approach could parallelize 
computing tasks using MapReduce on the EVs. In 
fact, EVs have more computational power than 
other mobile devices such as smartphones or wear-
ables; therefore, a group of EVs can be tasked with 
running data analytics in order to reduce latency.

On one hand, big data has enormous benefits 
in the economy, society, and the environment. 
On the other hand, there is concern about data 
security protection and privacy [15]. If data are 
excessively protected due to an individual’s priva-
cy, information would be significantly curtailed. As 
a result, much valuable information might be lost. 
Thus, there needs to be a balance between con-
sumers’ privacy and the benefit of sharing data. 
The utility-privacy trade-off has been explored in 
several studies, but there are open issues on how 
much uncertainty can be handled for EV integra-
tion to smart grid and green smart cities.

In summary, fast and effective data analytics 
approaches are required for real-time interaction 
of the EVs with the smart grid and smart city. 
Those approaches can benefit from the advanc-
es in mobile edge computing. However, security 
and privacy concerns escalate with distributed 
processing of EV data by other EVs. The nexus of 
processing capacity, delay, security, and privacy is 
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an open issue that has yet to be addressed in the 
domain of big data analytics for EVs.

CONCLUSION
In this article, we review the state-of-the-art data 
analytics tools for electric vehicle integration to 
smart grids and thereon to green smart cities as 
well as the big data that are generated by cars and 
drivers. We first provide an overview of smart grid 
and electric vehicle integration. We present the 
challenges of EV integration, and discuss how these 
challenges can be addressed by data analytics. 
Then we discuss the sources of big data including 
EVs, drivers, EV batteries, chargers, and EVSEs. We 
provide a comprehensive survey on data analytics 
tools that are used in this domain. We conclude 
the article with a summary, a requirement analysis 
for data analytics tools for EV related applications, 
and finally, with a discussion of future directions.
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